Friday, April 10, 2009

Scientists Test System To Steer Drivers Away From Dangerous Weather

ScienceDaily (Apr. 11, 2009) — Scientists at the National Center for Atmospheric Research (NCAR) are testing an innovative technological system in the Detroit area this month that ultimately will help protect drivers from being surprised by black ice, fog, and other hazardous weather conditions.
The prototype system is designed to gather detailed information about weather and road conditions from moving vehicles. Within about a decade, it should enable motor vehicles equipped with wireless technology to transmit automated updates about local conditions to a central database, which will then relay alerts to other drivers in the area.
"The goal is to reduce crashes, injuries, and deaths by getting drivers the information they need about nearby hazards," says Sheldon Drobot, the NCAR program manager in charge of the project. "The system will tell drivers what they can expect to run into in the next few seconds and minutes, giving them a critical chance to slow down or take other action."
NCAR's road weather system is part of IntelliDrive(SM), a national initiative overseen by the Department of Transportation (DOT) to use new technologies to make driving safer and improve mobility. Officials envision that, over the next 10 years or so, motor vehicles will begin to automatically communicate with each other and central databases, alerting drivers to threats that range from adverse road conditions to nearby vehicles that are moving erratically or are running through a red light. The goal of the DOT is to reduce motor vehicle accidents by 90 percent by 2030.
The national program brings together federal and state transportation officials, motor vehicle manufacturers, engineering and planning firms, consumer electronics companies, and others.
An estimated 1.5 million motor vehicle accidents annually are associated with poor weather, resulting in about 7,400 deaths and 690,000 injuries, according to a 2004 National Research Council report, "Where the Weather Meets the Road." The report called for improving safety by establishing a nationwide observation system to monitor weather conditions along roads and warn drivers about potential hazards.
For the road weather portion of IntelliDrive, vehicles will use sensors to measure atmospheric conditions such as temperature, pressure, and humidity. An onboard digital memory device will record that information, along with indirect signs of road conditions, such as windshield wipers being switched on or activation of the antilock braking system.
The information will be transmitted to a central database, where it will be integrated with other local weather data and traffic observations, as well as details about road material and alignment. The processed data will then be used to update motorists in the area when hazards are present and, when appropriate, suggest alternate routes.
The incoming data would be anonymous. Officials are working on guidelines to allow drivers to opt out of the system for privacy considerations.
In addition to providing motorist warnings, such a system will alert emergency managers to hazardous driving conditions and enable state highway departments to efficiently keep roads clear of snow. It can also help meteorologists refine their forecasts by providing them with continual updates about local weather conditions.
Motor vehicle manufacturers plan to install the onboard equipment in every new vehicle sold in the United States within a few years as part of a voluntary program to improve driving safety.
On the prowl for bad weather
NCAR scientists and engineers are testing the weather piece of the system by collecting information from 11 specially equipped cars in the Detroit area. Test drivers are on the prowl for adverse conditions, especially heavy rain and snow. Engineers will analyze the reliability of the system by comparing data from the cars with other observations from radars and weather satellites. They will also look at whether different models of cars-in this case, Jeep Cherokees, Ford Edges, and a Nissan Altima - produce comparable measurements of weather and road conditions.
The tests, which began early this month and will run for about two weeks, will help the NCAR team refine its software to accurately process data from motor vehicles. In the future, the team also hopes to study which types of weather information will be most useful and how that information can be clearly and safely communicated to drivers, possibly through a visual display or audio alert.
"The results look very encouraging," Drobot says. "The tests show that cars can indeed communicate critical information about weather conditions and road hazards."
Processing a deluge of observations
One of the biggest challenges for NCAR is to determine how to process the enormous amounts of data that could be generated by about 300 million motor vehicles. The center has worked with the Department of Defense, the aviation industry, and other organizations to analyze complex weather observations. But the new system incorporates information from far more sources, and those sources are moving.
NCAR engineers are developing mathematical formulas and other techniques to accurately interpret the information and eliminate misleading indicators. If a driver, for example, turns on the windshield wipers in clear weather to clean the windshield, the NCAR data system will identify that action as an outlier rather than issuing a false alert about precipitation.
"It's not enough to process the information almost instantaneously," says William Mahoney, who oversees the system's development for NCAR. "It needs to be cleaned up, sent through a quality control process, blended with traditional weather data, and eventually delivered back to drivers who are counting on the system to accurately guide them through potentially dangerous conditions."
IntelliDrive is a service mark of the U.S. Department of Transportation.
Adapted from materials provided by National Center for Atmospheric Research (NCAR).

Tuesday, March 17, 2009

Controllable Rubber Trailing Edge Flap To Reduce Loads On Wind Turbine Blades

ScienceDaily (Mar. 17, 2009) — The trailing edge of wind turbine blades can be manufactured in an elastic material that makes it possible to control the shape of the trailing edge. This will reduce the considerably dynamic loads that large wind turbine blades are exposed to during operation.
”Providing the blade with a movable trailing edge it is possible to control the load on the blade and extend the life time of the wind turbine components. This is similar to the technique used on aircrafts, where flaps regulate the lift during the most critical times such as at take-off and landing, "explains Helge Aagaard Madsen, Research Specialist on the project.
However, there is a difference. Whereas on aircrafts, movable flaps are non-deformable elements hinged to the trailing edge of the main wing, this new technique means a continuous surface of the profile on the wind turbine blade even when the trailing edge moves. The reason for this is that the trailing edge is constructed in elastic material and constitutes an integrated part of the main blade.
Robust design of rubber
In 2004 Risø DTU applied for the first patent for this basic technique of designing a flexible, movable trailing edge for a wind turbine blade. Since then there has been a significant development with regard to the project. By means of so-called "Gap-funding" provided by the Ministry of Science, Technology and Innovation and by the local Region Zealand it has been possible to develop such ideas into a prototype stage.
Part of the research has been aimed at the design and development of a robust controllable trailing edge. This has now led to the manufacturing of a trailing edge of rubber with built-in cavities that are fibre-reinforced. The cavities in combination with the directional fibre reinforcement provide the desired movement of the trailing edge, when the cavities are being put under pressure by air or water.
“In this project a number of different prototypes have been manufactured with a chord length of 15 cm and a length of 30 cm. The best version shows very promising results in terms of deflection and in terms of the speed of the deflection” says Helge Aagaard.
The size of the protype fits a blade airfoil section with a chord of one metre and such a blade section is now being produced and is going to be tested inside a wind tunnel.
The capability of the trailing edge to control the load on the blade section is going to be tested in a wind tunnel. This part of the development process is supported by GAP-funding from Region Zealand.
”If the results confirm our estimated performance, we will test the rubber trailing edge on a full-scale wind turbine within a few years” says Helge Aagaard.
Adapted from materials provided by Risø National Laboratory for Sustainable Energy.

Wednesday, March 11, 2009

New Design Means Cheaper, More Sustainable Construction

SOURCE

ScienceDaily (Mar. 11, 2009) — People are always looking for ways to make something less expensive and more environmentally friendly – and a team of researchers from North Carolina State University has figured out how to do both of those things at once when raising the large-scale buildings, such as parking garages, of the future.
More specifically, the researchers have figured out a way to use 30 percent less reinforcing steel in the manufacture of the concrete beams, or spandrels, used in the construction of parking garages – without sacrificing safety. Dr. Sami Rizkalla, one of the leaders of the research team, says they developed design guidelines that use less steel while maintaining safety and reliability. The new spandrel design "simplifies construction for precast concrete producers," Rizkalla says. In addition to using less steel, the new design cuts labor and manufacturing time in half – significantly decreasing costs.
Greg Lucier, a doctoral student at NC State who was also crucial to the research effort, says the new design guidelines include a significant margin for safety. For example, Lucier says the spandrels could handle two to three times the maximum weight they would be expected to bear. Lucier is also the lab manager of the Constructed Facilities Laboratory at NC State, which oversaw the testing of the new spandrel design.
The new design guidelines stem from a two-year project that was launched in January 2007, with support from the Precast/Prestressed Concrete Institute (PCI). PCI provided NC State with more than $400,000 in funding, materials and technical support over the life of the project.
The success of the project is already drawing interest from the concrete industry, with individual companies coming to NC State to get input on how to improve their products and manufacturing processes. For example, Rizkalla says, many companies want to collaborate with researchers at the Constructed Facilities Laboratory on research and development projects related to new materials, such as advanced composites, to be used in concrete products.
While researchers have published some elements of the research project, they will present an overview of the entire project – including new testing data – for the first time at the spring convention of the American Concrete Institute in San Antonio this month.
Adapted from materials provided by North Carolina State University.

Thursday, April 17, 2008

Electric Solar Wind Sail Could Power Future Space Travel In Solar System


Source:
ScienceDaily (Apr. 17, 2008) — The electric solar wind sail developed at the Finnish Meteorological Institute two years ago has moved rapidly from invention towards implementation. Electric sail propulsion might have a large impact on space research and space travel throughout the solar system.
The electric solar wind sail developed by Dr. Pekka Janhunen might revolutionise travelling in space. The electric sail uses the solar wind as its thrust source and therefore needs no fuel or propellant. The solar wind is a continuous plasma stream emanating from the Sun. Changes in the properties of the solar wind cause auroral brightening and magnetic storms, among other things.
The main parts of the device are long metallic tethers and a solar-powered electron gun which keeps the tethers positively charged. The solar wind exerts a small but continuous thrust on the tethers and the spacecraft.
“We haven't encountered major problems in any of the technical fields thus far. This has already enabled us to start planning the first test mission,” says Dr. Pekka Janhunen. An important subgoal was reached when the Electronics Research Laboratory of the University of Helsinki managed to develop a method for constructing a multiline micrometeoroid-resistant tether out of very thin metal wires using ultrasonic welding. The newly developed technique allows the bonding together of thin metal wires in any geometry; thus, the method might also have spinoff applications outside the electric sail.
Electric Sail For Space Travel
The electric sail could enable faster and cheaper solar system exploration. It might also enable economic utilisation of asteroid resources for, e.g. producing rocket fuel in orbit.
“The electric sail might lower the cost of all space activities and thereby, for example, help making large solar power satellites a viable option for clean electricity production. Solar power satellites orbiting in the permanent sunshine of space could transmit electric power to Earth by microwaves without interruptions. Continuous power would be a major benefit compared to, e.g. ground-based solar power where storing the energy over night, cloudy weather and winter are tricky issues, especially here in the far North,” says Dr. Pekka Janhunen.
Component work for the electric sail was carried out at the University of Helsinki and in Germany, Sweden, Russia and Italy. The electric sail was invented as a by-product of basic research done at the Finnish Meteorological Institute on the interaction of the solar wind with planets and their atmospheres. Work on the electric sail in Finland is currently funded by the Academy of Finland and private foundations.
The first international electric sail meeting will be arranged at ESA ESTEC in Noordwijk, The Netherlands on May 19, 2008.
Adapted from materials provided by Finnish Meteorological Institute.
Fausto Intilla

Wednesday, April 16, 2008

Cycling More Intelligently


Source:
ScienceDaily (Apr. 16, 2008) — Cycling is fun – if you can find the right tread. But those who tire themselves out quickly lose the desire to conquer the world on two wheels. A remedy could soon be available in the form of adaptronic components which report inappropriate biomechanical stress.
Modern bicycles leave nothing to be desired. 21, 24, 27 gears! For many amateur cyclists, such luxury is too much of a good thing. They change gear too infrequently and too late, get out of breath and don’t enjoy the ride. At the Hannover Messe in Germany (April 21 through 25), Fraunhofer researchers are presenting a bicycle with an intelligent pedal crank that helps the biker to direct his strength into the pedals.
There are two piezo-sensors integrated in one of the pedal cranks of this bicycle. One function of the sensors is to measure the forces that propel the rider forwards and show him how ‘evenly’ he is pedaling. In the exhibited prototype, the registered data are transmitted wirelessly in real time to a PC – in practical use this would be a device such as a PDA or a cell phone.
The integrated-function pedal crank is a result of the InGuss project, whose goal is to manufacture ‘intelligent’ cast parts, by directly integrating sensors, actuators and electronic components in the parts while they are being cast. In this project, researchers at the Fraunhofer Institutes for Manufacturing Technology and Applied Materials Research IFAM, for Structural Durability and System Reliability LBF and for Integrated Circuits IIS are developing the manufacturing technology and the components to be integrated.
The special feature of the bicycle pedal crank is that the piezoceramic actuators, sensors and electronic components are integrated in the light metal components during casting. This is no easy task, for the high temperatures of over 700°C that prevail during casting can destroy the sensitive electronic and electromechanical components. “We protect the components with special insulating materials, and adapt the process accordingly to prevent them from being damaged,” says Christoph Pille of the IFAM in Bremen. This would make it possible for the first time ever to integrate components such as RFID transponders during casting in such a way that they could not be lost, enabling components to be tracked, identified and protected against product piracy.
Heiko Atzrodt of the LBF is certain that this pedal crank demonstrator is just one example out of many potential applications for the technology: “Integrated sensor and adaptronic functions are likely to make their way into numerous products before long – for instance, sensors in aircraft parts could report material fatigue before it is too late. Integrated actuators make it possible to actively influence vibrations, too.”
Adapted from materials provided by Fraunhofer-Gesellschaft.
Fausto Intilla - www.oloscience.com

Tuesday, April 15, 2008

Road Safety: The Uncrashable Car?


Source:
ScienceDaily (Apr. 15, 2008) — The largest road safety research project ever launched in Europe will usher in a series of powerful road-safety systems for European cars. But, in the long term, its basic, experimental research could lead to a car that is virtually uncrashable.
A truck exits suddenly from a side road, directly into your lane only dozens of metres ahead. Suddenly, your car issues a warning, starts applying the brakes and attempts to take evasive action. Realising impact is unavoidable; in-car safety systems pre-tension the safety belts and arm the airbag, timing its release to the second before impact.
Such is the promise of the uncrashable car, coming to a dealer near you in the perhaps not-too-distant future. The system is part of the basic research undertaken by the largest research initiative into road safety ever undertaken in Europe.
PReVENT has a budget of over €50 million and 56 partners pursuing a broad, but highly complementary programme of research. A dozen sub-projects focus on specific road-safety issues, but all projects support and feed into each other in some way.
PReVENT is studying relatively cheap, even simple, technologies – such as parking sensors and existing satellite navigation – that can be retooled to enhance driver safety. But as part of its broad and deep approach to car safety, it is also diving into more experimental and medium- to long-term systems, innovations that could appear in five-to-ten years.
The uncrashable car is a theoretical construct that concerned a handful of PReVENT’s sub-projects. But it could become far more of a reality than anyone expected.
Of course, it is impossible to stop all car collisions, but the technology could be pushed to make it increasingly unlikely and mitigate crashes when they do occur.
For example, PReVENT project WILLWARN uses wireless communication with other vehicles to alert the driver about potentially dangerous situations ahead, while MAPS&ADAS reads sat-nav maps to track approaching hazards, like bends, dips or intersections. SASPENCE looks at safe driving distances and speed, while LATERALSAFE finally brings active sensing to the blind spot.
All have their role in the uncrashable car, as do many others within the broader project. But two projects, APALACI and COMPOSE, take this a step further, actively tracking the speed and trajectories of surrounding vehicles and other road users in real time. If one vehicle suddenly stops, or a pedestrian suddenly steps onto the road, they swing into action to rapidly calculate the implications.
Predictive collision detection
APALACI is an advanced pre-crash mitigation system built round the registration of other motorists and cyclists. In the APALACI system, sensors monitor the street or road immediately around the vehicle and collect as much information about a collision as possible, before it even starts to take place.
The system uses this data to decide on the ideal safety reaction strategy. Examples include controlled braking manoeuvres, controlled activation of the occupant restraint systems or pre-arming airbag systems. The car can react far faster than the driver, cutting speed by crucial amounts to ensure unavoidable accidents are less severe.
APALACI also developed a so-called ‘Start Inhibit System’ for trucks. It surveys the blind spot immediately in front of a truck and protects pedestrians or cyclists by preventing dangerous manoeuvres.
APALACI was tested in a series of vehicles like the Fiat Stilo, the Volvo FH12 truck, the Alfa Romeo 156 and Mercedes E350. It used laser sensors, radar, software decision assistance and a variety of other technologies to achieve the goal.
Tiny changes have a huge impact
COMPOSE, on the other hand, aims more specifically to keep others, as well as its driver, safe. It can apply the brakes if a pedestrian steps onto the road, or extend the bumper, and raise the bonnet to enhance occupant protection.
Tiny differences have a huge impact on car safety. Dropping speed by 1km/h can reduce accidents with injury by 3 per cent, while braking fractions of a second sooner is enough to reduce the damage caused dramatically.
The systems were tested in the BMW 545i and the Volvo FH12 truck, and they do appreciably enhance safety. But, for all their potential, these systems remain, for now, the preserve of the future.
“The teams developed sophisticated algorithms to track all these elements in the landscape,” explains Matthias Schulze, coordinator of the EU-funded PReVENT project and Senior Manager for ITS & Services at Daimler AG. “But they require enormous computer power to keep track of all the various elements, so this work is aimed at basic research, establishing how it could be done. It will be a while before in-car computers are sophisticated enough to use these systems.”
Nonetheless, they do provide tools that automakers can use to mitigate the potential for accidents, and they provide a clear research roadmap for the uncrashable car of the future.
Adapted from materials provided by ICT Results.
Fausto Intilla

Sunday, December 9, 2007

Car Prototype Generates Electricity, And Cash


Source:

ScienceDaily (Dec. 9, 2007) — The price of oil nearly reached $100 a barrel recently, but a new University of Delaware prototype vehicle demonstrates how the cost of the black stuff could become a concern of the past.
A team of UD faculty has created a system that enables vehicles to not only run on electricity alone, but also to generate revenue by storing and providing electricity for utilities. The technology--known as V2G, for vehicle-to-grid--lets electricity flow from the car’s battery to power lines and back.
“When I get home, I’ll charge up and then switch into V2G mode,” said Willett Kempton, UD associate professor of marine policy and a V2G pioneer who began developing the technology more than a decade ago and who is now testing the new prototype vehicle. The UD V2G team includes Kempton as well as Ajay Prasad, professor of mechanical engineering; Suresh Advani, George W. Laird Professor of Mechanical Engineering; and Meryl Gardner, associate professor of business administration, along with several students.
When the car is in the V2G setting, the battery’s charge goes up or down depending on the needs of the grid operator, which sometimes must store surplus power and other times requires extra power to respond to surges in usage. The ability of the V2G car’s battery to act like a sponge provides a solution for utilities, which pay millions to generating stations that help balance the grid. Kempton estimates the value for utilities could be up to $4,000 a year for the service, part of which could be paid to drivers.
The technology will work on a large scale, he said, because on average 95 percent of all cars are parked at any given time. One hour a day of car usage is the average in America.
“A car sitting there with a tank of gasoline in it, that’s useless,” he said. “If it’s a battery storing a lot of electricity and a big plug that allows moving power back and forth quickly, then it’s valuable.”
Kempton already has one of those large plugs at his home. He has a 240-volt plug that gives the battery a full charge--or a range up to 150 highway miles--in just two hours. A smaller, standard 110-volt plug works but provides a full charge in about 12 hours. The smaller plug also moves less power for the grid operator when the car is in V2G mode, Kempton explained.
“The bigger the plug, the more power you can move, the more revenue,” he said, explaining that it cost about $600 to have the larger plug installed.
But even though Kempton is supplying power to the grid with the prototype car, he’s not getting paid for it--yet.
PJM, the grid operator for 14 states, including Delaware, is keen on the technology and hosted a demonstration of the V2G car. But PJM requires at least 300 megawatts to purchase power. That means the UD team and its collaborators must get 300 cars up and running.
The prototype car is a stepping-stone to that goal. Kempton is working with UD mechanical engineers Prasad and Advani, who plan to add V2G to the University’s hydrogen fuel cell bus. Next, the team, including the company that created the car, California-based AC Propulsion, will test the prototypes and fix any potential problems they bring to light. Then they’ll begin creating a user interface that will let drivers, for example, tell the car to never go below 50 percent charge while in V2G mode.
Helping him to learn what types of features potential buyers would want on the car and to identify potential buyers are business administration faculty member Gardner and her students. They’ve done a pilot survey of nearly 100 drivers that’s shown there’s a lot of interest in the technology, she said.
“We also want to provide information on how to market the car,” she said, so her team is asking people questions like how much they would be willing to pay for it and how they feel about driving a car that’s better for the environment than a gasoline-powered vehicle.
That last question gets Kempton, who also is involved in College of Marine and Earth Studies research on offshore wind farms, the most excited. He explained that even if the electricity used to charge the car is produced by a coal-fired power plant, the car itself produces no carbon dioxide emissions. If a wind farm fuels the electricity from the power plant, he explained, the car and its power source would be emissions free.
And even though the green aspect of the car is key for Kempton, he knows consumers might have some other, more practical, questions about the vehicle, such as, “What’s it like to drive?”
Zippy yet quiet, being behind its wheel is a thrill, he said. “I hate getting back in my gas car. It feels sluggish.”
V2G prototype specifications
The Car: Manufactured by vehicle technology company AC Propulsion; formerly a Toyota Scion, which was chosen because it is light yet provides plenty of passenger room
Emissions: The car itself produces no carbon dioxide emissions
Acceleration: 0 to 60 miles per hour in 7 seconds
Top Speed: 95 miles per hour
Range: 120 highway, 150 city
Battery Life: 5 years or about 50,000 miles (being tested and verified)
Recharge: 2 hours using 240-volt plug or overnight using 110-volt plug
Maintenance: No oil changes; brakes last three times longer because the car has regenerative braking, a mechanism that slows the car and returns power to the battery
Adapted from materials provided by University of Delaware.

Fausto Intilla