Showing posts with label Energy and the Environment. Show all posts
Showing posts with label Energy and the Environment. Show all posts

Wednesday, August 29, 2007

Hydrogen Generating Technology Closer Than Ever


Source:

Science Daily — Researchers at Purdue University have further developed a technology that could represent a pollution-free energy source for a range of potential applications, from golf carts to submarines and cars to emergency portable generators.
The technology produces hydrogen by adding water to an alloy of aluminum and gallium. When water is added to the alloy, the aluminum splits water by attracting oxygen, liberating hydrogen in the process. The Purdue researchers are developing a method to create particles of the alloy that could be placed in a tank to react with water and produce hydrogen on demand.
The gallium is a critical component because it hinders the formation of an aluminum oxide skin normally created on aluminum's surface after bonding with oxygen, a process called oxidation. This skin usually acts as a barrier and prevents oxygen from reacting with aluminum. Reducing the skin's protective properties allows the reaction to continue until all of the aluminum is used to generate hydrogen, said Jerry Woodall, a distinguished professor of electrical and computer engineering at Purdue who invented the process.
Since the technology was first announced in May, researchers have developed an improved form of the alloy that contains a higher concentration of aluminum.
Recent findings are detailed in the first research paper about the work, which will be presented on Sept. 7 during the 2nd Energy Nanotechnology International Conference in Santa Clara, Calif. The paper was written by Woodall, Charles Allen and Jeffrey Ziebarth, both doctoral students in Purdue's School of Electrical and Computer Engineering.
Because the technology could be used to generate hydrogen on demand, the method makes it unnecessary to store or transport hydrogen - two major obstacles in creating a hydrogen economy, Woodall said.
The gallium component is inert, which means it can be recovered and reused.
"This is especially important because of the currently much higher cost of gallium compared with aluminum," Woodall said. "Because gallium can be recovered, this makes the process economically viable and more attractive for large-scale use. Also, since the gallium can be of low purity, the cost of impure gallium is ultimately expected to be many times lower than the high-purity gallium used in the electronics industry."
As the alloy reacts with water, the aluminum turns into aluminum oxide, also called alumina, which can be recycled back into aluminum. The recycled aluminum would be less expensive than mining the metal, making the technology more competitive with other forms of energy production, Woodall said.
In recent research, the engineers rapidly cooled the molten alloy to make particles that were 28 percent aluminum by weight and 72 percent gallium by weight. The result was a "metastable solid alloy" that also readily reacted with water to form hydrogen, alumina and heat, Woodall said.
Following up on that work, the researchers discovered that slowly cooling the molten alloy produced particles that contain 80 percent aluminum and 20 percent gallium.
"Particles made with this 80-20 alloy have good stability in dry air and react rapidly with water to form hydrogen," Woodall said. "This alloy is under intense investigation, and, in our opinion, it can be developed into a commercially viable material for splitting water."
The technology has numerous potential applications. Because the method makes it possible to use hydrogen instead of gasoline to run internal combustion engines, it could be used for cars and trucks. Combusting hydrogen in an engine or using hydrogen to drive a fuel cell produces only water as waste.
"It's a simple matter to convert ordinary internal combustion engines to run on hydrogen. All you have to do is replace the gasoline fuel injector with a hydrogen injector," Woodall said.
The U.S. Department of Energy has set a goal of developing alternative fuels that possess a "hydrogen mass density" of 6 percent by the year 2010 and 9 percent by 2015. The percent mass density of hydrogen is the mass of hydrogen contained in the fuel divided by the total mass of the fuel multiplied by 100. Assuming 50 percent of the water produced as waste is recovered and cycled back into the reaction, the new 80-20 alloy has a hydrogen mass density greater than 6 percent, which meets the DOE's 2010 goal.
Aluminum is refined from the raw mineral bauxite, which also contains gallium. Producing aluminum from bauxite results in waste gallium.
"This technology is feasible for commercial use," Woodall said. "The waste alumina can be recycled back into aluminum, and low-cost gallium is available as a waste product from companies that produce aluminum from the raw mineral bauxite. Enough aluminum exists in the United States to produce 100 trillion kilowatt hours of energy. That's enough energy to meet all the U.S. electric needs for 35 years. If impure gallium can be made for less than $10 a pound and used in an onboard system, there are enough known gallium reserves to run 1 billion cars."
The researchers note in the paper that for the technology to be used to operate cars and trucks, a large-scale recycling program would be required to turn the alumina back into aluminum and to recover the gallium.
"In the meantime, there are other promising potential markets, including lawn mowers and personal motor vehicles such as golf carts and wheelchairs," Woodall said. "The golf cart of the future, three or four years from now, will have an aluminum-gallium alloy. You will add water to generate hydrogen either for an internal combustion engine or to operate a fuel cell that recharges a battery. The battery will then power an electric motor to drive the golf cart."
Another application that is rapidly being developed is for emergency portable generators that will use hydrogen to run a small internal combustion engine. The generators are likely to be on the market within a year, Woodall said.
The technology also could make it possible to introduce a non-polluting way to idle diesel trucks. Truck drivers idle their engines to keep power flowing to appliances and the heating and air conditioning systems while they are making deliveries or parked, but such idling causes air pollution, which has prompted several states to restrict the practice.
The new hydrogen technology could solve the truck-idling dilemma.
"What we are proposing is that the truck would run on either hydrogen or diesel fuel," Woodall said. "While you are on the road you are using the diesel, but while the truck is idling, it's running on hydrogen."
The new hydrogen technology also would be well-suited for submarines because it does not emit toxic fumes and could be used in confined spaces without harming crew members, Woodall said.
"You could replace nuclear submarines with this technology," he said.
Other types of boats, including pleasure craft, also could be equipped with such a technology.
"One reason maritime applications are especially appealing is that you don't have to haul water," Woodall said.
The Purdue researchers had thought that making the process competitive with conventional energy sources would require that the alumina be recycled back into aluminum using a dedicated infrastructure, such as a nuclear power plant or wind generators. However, the researchers now know that recycling the alumina would cost far less than they originally estimated, using standard processing already available.
"Since standard industrial technology could be used to recycle our nearly pure alumina back to aluminum at 20 cents per pound, this technology would be competitive with gasoline," Woodall said. "Using aluminum, it would cost $70 at wholesale prices to take a 350-mile trip with a mid-size car equipped with a standard internal combustion engine. That compares with $66 for gasoline at $3.30 per gallon. If we used a 50 percent efficient fuel cell, taking the same trip using aluminum would cost $28."
The Purdue Research Foundation holds title to the primary patent, which has been filed with the U.S. Patent and Trademark Office and is pending. An Indiana startup company, AlGalCo LLC., has received a license for the exclusive right to commercialize the process.
In 1967, while working as a researcher at IBM, Woodall discovered that liquid alloys of aluminum and gallium spontaneously produce hydrogen if mixed with water. The research, which focused on developing new semiconductors for computers and electronics, led to advances in optical-fiber communications and light-emitting diodes, making them practical for everything from DVD players to television remote controls and new types of lighting displays. That work also led to development of advanced transistors for cell phones and components in solar cells powering space modules like those used on the Mars rover, earning Woodall the 2001 National Medal of Technology from President George W. Bush.
Also while at IBM, Woodall and research engineer Jerome Cuomo were issued a U.S. patent in 1982 for a "solid state, renewable energy supply." The patent described their discovery that when aluminum is dissolved in liquid gallium just above room temperature, the liquid alloy readily reacts with water to form hydrogen, alumina and heat.
Future research will include work to further perfect the solid alloy and develop systems for the controlled delivery of hydrogen.
The 2nd Energy Nanotechnology International Conference is sponsored by the American Society of Mechanical Engineers and ASME Nanotechnology Institute.
Note: This story has been adapted from a news release issued by Purdue University.

Fausto Intilla

Wednesday, August 22, 2007

Pellets Of Power Designed To Deliver Hydrogen For Tomorrow's Vehicles


Source:

Science Daily — Hydrogen may prove to be the fuel of the future in powering the efficient, eco-friendly fuel cell vehicles of tomorrow. Developing a method to safely store, dispense and easily "refuel" the vehicle's storage material with hydrogen has baffled researchers for years. However, a new and attractive storage medium being developed by Pacific Northwest National Laboratory scientists may provide the "power of pellets" to fuel future transportation needs.
The Department of Energy's Chemical Hydrogen Storage Center of Excellence is investigating a hydrogen storage medium that holds promise in meeting long-term targets for transportation use. As part of the center, PNNL scientists are using solid ammonia borane, or AB, compressed into small pellets to serve as a hydrogen storage material. Each milliliter of AB weighs about three-quarters of a gram and harbors up to 1.8 liters of hydrogen.
Researchers expect that a fuel system using small AB pellets will occupy less space and be lighter in weight than systems using pressurized hydrogen gas, thus enabling fuel cell vehicles to have room, range and performance comparable to today's automobiles.
"With this new understanding and our improved methods in working with ammonia borane," said PNNL scientist Dave Heldebrant, "we're making positive strides in developing a viable storage medium to provide reliable, environmentally friendly hydrogen power generation for future transportation needs."
A small pellet of solid ammonia borane (240 mg), as shown, is capable of storing relatively large quantities of hydrogen (0.5 liter) in a very small volume.
PNNL scientists are learning to manipulate the release of hydrogen from AB at predictable rates. By varying temperature and manipulating AB feed rates to a reactor, researchers envision controlling the production of hydrogen and thus fuel cell power, much like a gas pedal regulates fuel to a car's combustion engine. "Once hydrogen from the storage material is depleted, the AB pellets must be safely and efficiently regenerated by way of chemical processing," said PNNL scientist Don Camaioni. "This 'refueling' method requires chemically digesting or breaking down the solid spent fuel into chemicals that can be recycled back to AB with hydrogen."
Don Camaioni and Dave Heldebrant presented this research at the 234th American Chemical Society National Meeting in Boston, Mass. on August 21.
Note: This story has been adapted from a news release issued by DOE/Pacific Northwest National Laboratory.

Fausto Intilla

Friday, August 17, 2007

Spark-free, Fuel-efficient Engines On The Way


Source:

Science Daily — In an advance that could help curb global demand for oil, MIT researchers have demonstrated how ordinary spark-ignition automobile engines can, under certain driving conditions, move into a spark-free operating mode that is more fuel-efficient and just as clean.The mode-switching capability could appear in production models within a few years, improving fuel economy by several miles per gallon in millions of new cars each year.
Over time, that change could cut oil demand in the United States alone by a million barrels a day. Currently, the U.S. consumes more than 20 million barrels of oil a day.The MIT team presented their latest results on July 23 at the Japan Society of Automotive Engineers (JSAE)/Society of Automotive Engineers (SAE) 2007 International Fuel and Lubricants Meeting.Many researchers are studying a new way of operating an internal combustion engine known as "homogeneous charge compression ignition" (HCCI). Switching a spark-ignition (SI) engine to HCCI mode pushes up its fuel efficiency.In an HCCI engine, fuel and air are mixed together and injected into the cylinder. The piston compresses the mixture until spontaneous combustion occurs. The engine thus combines fuel-and-air premixing (as in an SI engine) with spontaneous ignition (as in a diesel engine). The result is the HCCI's distinctive feature: combustion occurs simultaneously at many locations throughout the combustion chamber.That behavior has advantages. In both SI and diesel engines, the fuel must burn hot to ensure that the flame spreads rapidly through the combustion chamber before a new "charge" enters. In an HCCI engine, there is no need for a quickly spreading flame because combustion occurs throughout the combustion chamber. As a result, combustion temperatures can be lower, so emissions of nitrogen pollutants are negligible. The fuel is spread in low concentrations throughout the cylinder, so the soot emissions from fuel-rich regions in diesels are not present. Perhaps most important, the HCCI engine is not locked into having just enough air to burn the available fuel, as is the SI engine. When the fuel coming into an SI engine is reduced to cut power, the incoming air must also be constrained--a major source of wasted energy. However, it is difficult to control exactly when ignition occurs in an HCCI engine. And if it does not begin when the piston is positioned for the power stroke, the engine will not run right."It's like when you push a kid on a swing," said Professor William H. Green, Jr., of the Department of Chemical Engineering. "You have to push when the swing is all the way back and about to go. If you push at the wrong time, the kid will twist around and not go anywhere. The same thing happens to your engine."According to Green, ignition timing in an HCCI engine depends on two factors: the temperature of the mixture and the detailed chemistry of the fuel. Both are hard to predict and control. So while the HCCI engine performs well under controlled conditions in the laboratory, it is difficult to predict at this time what will happen in the real world.Green, along with Professor Wai K. Cheng of the Department of Mechanical Engineering, and colleagues in MIT's Sloan Automotive Laboratory and MIT's Laboratory for Energy and the Environment have been working to find the answer.A large part of their research has utilized an engine modified to run in either HCCI or SI operating mode. For the past two years, Morgan Andreae (MIT PhD 2006) and graduate student John Angelos of chemical engineering have been studying the engine's behavior as the inlet temperature and type of fuel are changed. Not surprisingly, the range of conditions suitable for HCCI operation is far smaller than the range for SI mode. Variations in temperature had a noticeable but not overwhelming effect on when the HCCI mode worked. Fuel composition had a greater impact, but it was not as much of a showstopper as the researchers expected. Using the results of their engine tests as a guide, the researchers developed an inexpensive technique that should enable a single engine to run in SI mode but switch to HCCI mode whenever possible. A simple temperature sensor determines whether the upcoming cycle should be in SI or HCCI mode (assuming a constant fuel).To estimate potential fuel savings from the mode-switching scheme, Andreae determined when an SI engine would switch into HCCI mode under simulated urban driving conditions. Over the course of the simulated trip, HCCI mode operates about 40 percent of the time.The researchers estimate that the increase in fuel efficiency would be a few miles per gallon. "That may not seem like an impressive improvement," said Green. "But if all the cars in the US today improved that much, it might be worth a million barrels of oil per day--and that's a lot."This research was supported by Ford Motor Company and the Ford-MIT Alliance, with additional support from BP.
Note: This story has been adapted from a news release issued by Massachusetts Institute of Technology.

Fausto Intilla